
Building a simple room exploring autonomous robot with�zz and
LEGO ® Mindstorms® EV3

Jean-Louis Villecroze
jlv@f1zz.org @CocoaGeek

June 21, 2019

Abstract

In this article 1 , we will detail the implementation of a simple room exploring autonomous robot, built
from LEGO ® Mindstorms ® and running on the EV3 Intelligent brick .

Prerequisite

A basic understanding of the concepts behind�zz (version 0.6 and up) is expected from the reader of this
article. It is suggested to read the introductory article Building a simple stock prices monitor with �zz 2 �rst
or at least read sections two to four of theuser manual for an overview of the language and runtime. The
complete source code discussed in this article can be downloaded from the author's web site3.

Running �zz on the LEGO ® Mindstorms ®

Let's get started by seeing how to run�zz on the EV3 Intelligent brick . First, you need an SD card to ash
the custom Linux distribution called ev3dev4. Once you have ashed the image and inserted the card in the
SD port of the brick, plug in a USB WiFi dongle in the unit and pr ess the middle button to get it booting.
If the SD card is bootable, the EV3 will boot from it instead of booting the standard Mindstorms OS from
its internal ash storage. The EV3, being far from a workhorse, will take some time to boot and display the
Brickman UI which you will need to use to setup the WiFi connection. The setup will be saved so you won't
have to do that again. Once the unit is connected to your localnetwork, you can usessh to log into it (the
default user for ev3devis robot with the password is maker) and install the Linux build of �zz :

jlv@arrakis:~ $ ssh robot@192.168.1.21
Password:
Linux ev3dev 4.14.96-ev3dev-2.3.2-ev3 #1 PREEMPT Sun Jan 2 7 21:27:35 CST 2019 armv5tejl

_____ _
_____ _|___ / __| | _____ __

/ _ \ \ / / |_ \ / _` |/ _ \ \ / /
| __/\ V / ___) | (_| | __/\ V /
___| _/ |____/ __,_|___| _/

Debian stretch on LEGO MINDSTORMS EV3!
Last login: Fri Jun 7 02:09:10 2019 from 192.168.1.29
robot@ev3dev:~ $ wget http://f1zz.org/downloads/fizz.0.6.0-X-LNX.tgz
--2019-06-07 03:08:29-- http://f1zz.org/downloads/fiz z.0.6.0-X-LNX.tgz
Resolving f1zz.org (f1zz.org)... 149.56.222.2
Connecting to f1zz.org (f1zz.org)|149.56.222.2|:80... c onnected.
HTTP request sent, awaiting response... 200 OK
Length: 24741747 (24M) [application/x-tar]
Saving to: fizz.0.6.0-X-LNX.tgz

fizz.0.6.0-X-LNX.tgz 100%[========================== ==>] 23.59M 724KB/s
in 34s

2019-06-07 03:09:04 (701 KB/s) - fizz.0.6.0-X-LNX.tgz sav ed [24741747/24741747]

robot@ev3dev:~ $ tar xvzf fizz.0.6.0-X-LNX.tgz
robot@ev3dev:~ $ cd fizz.0.6.0-X
robot@ev3dev:~/fizz.0.6.0-X $./fizz.ev3
fizz 0.6.0-X (20190601.1943) [lnx.ev3|1]
Press the ESC key at anytime for input prompt

1Thanks to Robert Wasmann (@retrospasm) for providing feedback and r eviewing this document.
2http://f1zz.org/downloads/iex.pdf
3http://f1zz.org/downloads/ev3.tgz
4https://www.ev3dev.org/

1

As the EV3's hardware is more limited (arm926ej-s) than more recent embedded boards,�zz has a special
build for that platform (fizz.ev3) where not all modules are available (notablyLGRand WWW). Keep in mind
also that performance is also lacking.

We can test that �zz is running with one of the simpler samples:

robot@ev3dev:~/fizz.0.6.0-X $./fizz.ev3 ./etc/samples/calc.fizz
fizz 0.6.0-X (20190601.1943) [lnx.ev3|1]
Press the ESC key at anytime for input prompt

load : loading ./etc/samples/calc.fizz ...
load : loaded ./etc/samples/calc.fizz in 1.236s
load : loading completed in 1.367s
?- #calc([[5,mul,2],mul,[1,add,:v]],130)
-> (12) := 1.00 (0.903) 1

Just running �zz on the EV3 isn't enough to have access to the unit's sensors and motors.A EV3module
needs to be loaded in�zz and some speci�c elementals must be running on the substrate for �zz to be
accessing the unit capabilities.

The robot

We are going to use a pretty standard design for a mobile robotwhich will only use the blocks that comes
with the Education version of the LEGO ® Mindstorms ® kit 5. In this article, we won't be describing the
actual step-by-step assembly of the robot, but here are a couple of pictures to give you an idea of how it was
put together:

5https://education.lego.com/en-us/middle-school/intro/mindstor ms-ev3

2

Here is the list of the sensors and motors you will need to recreate it:

2 LEGO EV3 Large Servo Motor
1 LEGO EV3 Medium Servo Motor
1 LEGO EV3 Ultrasonic Sensor
1 LEGO EV3 Gyro Sensor
1 LEGO EV3 Color Sensor
1 LEGO EV3 Touch Sensor

With this in mind, the basic functions the robot has are as follows:

ˆ use the two medium motors fortank steering type mobility

ˆ use the gyroscope to keep track of the heading

ˆ use an orientable sonic sensor to look for obstacles

ˆ use a color sensor to sense close proximity of a low obstacle (since the Sonic sensor is higher than the
main body of the robot)

ˆ use the touch sensor as a (software) power button

Altough, the software should run entirely on the EV3 Intelligent brick , we will make provisions for it to use
the clusterisation capability of �zz so that parts of the logic can be run outside of the physical robot on a
much faster, and separate computer.

Lastly, as it is painfully slow to use vi directly on the EV3, what follows assumes that you will be using a
MacOS or Linux computer with your favorite code editor and copying the �les over to the EV3 placing them
in /home/robot/fizz.0.6.0-X/etc/ev3 .

Predicates pattern

As all of the elementalsprovided by the EV3module follows the same pattern when it comes to interacting
with them, we are going to follow that pattern and apply it to a ll the elementalswe may be creating. That
is, we will use speci�c predicates to read or write values (via peek, poke) and execute (or cancel) speci�c
functions (via call , halt).

Each predicate will have two terms: a symbol (either peek, poke, call or halt) followed by a functor or a
list of functors. For examples:

#ev3.something(poke,[value.a(30),value.b(hello)]) set the values of value.a and value.b .
#ev3.something(peek,value.a(:a)) get the value of value.a .
#ev3.something(call,do.it(45)) start the do.it function with 45 as argument.
#ev3.something(halt) abort any running function.

Similarly, when an elementalwill be publishing something, it will use the same pattern with the symbolhint
as the �rst term in the statement. For example:

ev3.sen.touch(hint, pressed(1)) the Touch Sensor is pressed down.
ev3.sen.touch(hint, pressed(0)) the Touch Sensor was released.

3

System, motors and sensors

To get started, let's create a �rst �zz �le that will describe the core elementalsthat are necessary for the
EV3module to be usable. We will call this �le system.fizz :

1 ev3.sys {
2
3 class = EV3CSYSLEGOSystem
4
5 }
6
7 ev3.sys.led.0 {
8
9 class = EV3CSYSLEGOLed,

10 index = 0
11
12 }
13
14 ev3.sys.led.1 {
15
16 class = EV3CSYSLEGOLed,
17 index = 1
18
19 }

In it, we de�ne three elementalseach mapped to a speci�c class ofelemental that is provided by the EV3
module. On line 1, we de�neev3.sys which along with providing a way to read the device's battery status,
will watch over plugging and unplugging of sensors and motors. It also provides some core functionalities for
the other elementalsin the modules. On lines 7 and 14, we de�ne theelementalsthat control the two LEDs
available on theEV3. The index property indicates which of the LEDs (0 is the left one) the elementaluses.

To try this, we need to create a solution �le (JSON formatted) that can be loaded by �zz and load
system.fizz as well as any modules we may be using. Create that �le with thename robot.json and
copy the following content into it. It simply indicates the m odules and the source �les to be loaded:

1 {
2 "solution" : {
3 "modules" : ["modEV3"],
4 "sources" : ["system.fizz"],
5 "globals" : []
6 }
7 }

If we now use that �le with �zz , we can query the battery status and change the LEDs brightness. Note
that each of the LEDs is actually build from two physical LEDs: one green and one red.

robot@ev3dev:~/fizz.0.6.0-X $./fizz.ev3 ./etc/ev3/robot.json
fizz 0.6.0-X (20190601.1943) [lnx.ev3|1]
Press the ESC key at anytime for input prompt

load : loading ./etc/ev3/robot.json ...
load : loaded ./mod/lnx/ev3/modEV3.so in 0.125s
load : loading ./etc/ev3/system.fizz ...
load : loaded ./etc/ev3/system.fizz in 0.253s
load : loading completed in 0.515s
?- #ev3.sys(peek,bat.voltage.p(:b))
-> (0.440722) := 1.00 (0.068) 1
?- #ev3.sys.led.0(poke,g(0.5))
-> () := 1.00 (0.028) 1
?- #ev3.sys.led.1(poke,r(1))
-> () := 1.00 (0.025) 1

We are now going to describe the sensor layout for the robot byde�ning the required elementalsin a new
�zz �le which we will call sensors.fizz . We �rst de�ne the elemental handling the LEGO Touch sensor
(which we will be using to power ON or OFF the robot):

4

1 ev3.sen.touch {
2
3 class = EV3CSENLEGOTouch,
4 port = port2,
5 verbose = yes
6
7 }

On line 4, we indicate which port of the EV3 unit the sensor is connected to. If you have connected it to
another one of the four possible ports, you will have to modify it there (possible choices areport1 , port2 ,
port3 and port4). The following property we set is verbose. This is a common property for an elemental
which when set to yes indicates that the elemental should output some traces during its execution so that
we get a better sense of what is going on. In this case, mainly if the physical sensor is detected onport2 or not.

We will now de�ne the elemental for the LEGO Color sensor:

1 ev3.sen.color {
2
3 class = EV3CSENLEGOColor,
4 port = port4,
5 mode = reflected,
6 verbose = yes
7
8 }

Just like the previous elemental, we specify theport and verbose property but also (on line 5) indicates the
modein which the sensor must operate. Here, we pick thereflected mode which is the most suited for close
proximity detection as the amount of reected light will inc rease as the robot gets closer to a reecting surface.

Moving on to the LEGO Ultrasonic sensor:

1 ev3.sen.sonic {
2
3 class = EV3CSENLEGOSonic,
4 port = port3,
5 mode = continuous,
6 verbose = yes
7
8 }

Here also, we set themodein which the sensor will operate. Thecontinuous mode will have the sensor
continuously sensing the distance to the obstacle in its line-of-sight.

Lastely, we de�ne the LEGO Gyroscope sensor:

1 ev3.sen.gyros {
2
3 class = EV3CSENLEGOGyros,
4 port = port1,
5 mode = angle1axis,
6 verbose = yes
7
8 }

As we are using it to sense the orientation around the vertical axis of the robot, we will use the mode
angle1axis . For more details on this sensor's (or others) modes, refer to the �zz manual.

Once we add the new�zz �le to our solution (robot.json):

5

1 {
2 "solution" : {
3 "modules" : ["modEV3"],
4 "sources" : ["system.fizz","sensors.fizz"],
5 "globals" : []
6 }
7 }

We can relaunch�zz and start reading from the sensors. We'll use thecommand spy to see thestatements
published by ev3.sen.touch when the button is pressed. Note also that before the second reading from the
gyroscope, the robot was rotated by 90 degrees to its left:

robot@ev3dev:~/fizz.0.6.0-X $./fizz.ev3 ./etc/ev3/robot.json
fizz 0.6.0-X (20190601.1943) [lnx.ev3|1]
Press the ESC key at anytime for input prompt

load : loading ./etc/ev3/robot.json ...
load : loaded ./mod/lnx/ev3/modEV3.so in 0.082s
load : loading ./etc/ev3/system.fizz ...
load : loaded ./etc/ev3/system.fizz in 0.193s
load : loading ./etc/ev3/sensors.fizz ...
ev3.sen.touch : sensor detected!
ev3.sen.color : sensor detected!
ev3.sen.sonic : sensor detected!
load : loaded ./etc/ev3/sensors.fizz in 0.563s
load : loading completed in 1.004s
ev3.sen.gyros : sensor detected!
?- /spy(append,ev3.sen.touch)
spy : observing ev3.sen.touch
spy : S ev3.sen.touch(hint, pressed(1)) (15.000000)
spy : S ev3.sen.touch(hint, pressed(0)) (15.000000)
?- #ev3.sen.color(peek,value(:v))
-> (0.010000) := 1.00 (0.044) 1
?- #ev3.sen.sonic(peek,value(:v))
-> (0.321000) := 1.00 (0.039) 1
?- #ev3.sen.gyros(peek,value(:v))
-> (0) := 1.00 (0.044) 1
?- #ev3.sen.gyros(peek,value(:v))
-> (-93) := 1.00 (0.037) 1

For the three motors we are using on the robot, we are going to create a new �le called motors.fizz and
de�ne in it an elemental for each one:

1 ev3.act.motor.l {
2
3 class = EV3CACTLEGOMotor,
4 port = portA,
5 speed = 90,
6 verbose = yes
7
8 }
9

10 ev3.act.motor.r {
11
12 class = EV3CACTLEGOMotor,
13 port = portD,
14 speed = 90,
15 verbose = yes
16
17 }
18
19 ev3.act.motor.t {
20
21 class = EV3CACTLEGOMotor,
22 port = portC,
23 speed = 270,
24 stopaction = hold,
25 verbose = yes
26
27 }

6

As the EV3module doesn't di�erentiate between medium and small motors, we will use the same class of
elemental for each of the tacho motors. Using the property port we specify where each one is plugged in.
You may need to adjust that as needed for your robot (possiblechoices areportA , portB , portC and portD).
For each of the motors, we use thespeed property to set the default rotational speed of the motor (ex-
pressed in degree per second). The twoelementalsev3.act.motor.l and ev3.act.motor.r are the motors
that will be used to drive the robot around, while ev3.act.motor.t will be used to change the ultrasonic
sensor orientation. For the later, we specify the propertystopaction to de�ne what it should do when the
requested position is reached. Here, we will use thehold mode as we want the motor to hold its position.
This is needed as there may be some resistance coming from thecable connecting the sonic sensor to the
EV3 in some orientations.

Once we addmotors.fizz to our solution �le (robot.json):

1 {
2 "solution" : {
3 "modules" : ["modEV3"],
4 "sources" : ["system.fizz","sensors.fizz","motors.fiz z"],
5 "globals" : []
6 }
7 }

We can relaunch�zz and test sending commands to the top motor:

robot@ev3dev:~/fizz.0.6.0-X $./fizz.ev3 ./etc/ev3/robot.json
fizz 0.6.0-X (20190601.1943) [lnx.ev3|1]
Press the ESC key at anytime for input prompt

load : loading ./etc/ev3/robot.json ...
load : loaded ./mod/lnx/ev3/modEV3.so in 0.082s
load : loading ./etc/ev3/system.fizz ...
load : loaded ./etc/ev3/system.fizz in 0.205s
load : loading ./etc/ev3/sensors.fizz ...
ev3.sen.touch : sensor detected!
ev3.sen.color : sensor detected!
ev3.sen.sonic : sensor detected!
load : loaded ./etc/ev3/sensors.fizz in 0.569s
load : loading ./etc/ev3/motors.fizz ...
ev3.sen.gyros : sensor detected!
ev3.act.motor.l : motor detected!
ev3.act.motor.r : motor detected!
load : loaded ./etc/ev3/motors.fizz in 0.449s
ev3.act.motor.t : motor detected!
load : loading completed in 1.574s
?- #ev3.act.motor.t(call,by(-45))
-> () := 1.00 (0.036) 1
?- #ev3.act.motor.t(peek,position(:p))
-> (-44) := 1.00 (0.036) 1

Heartbeat and power button

Let's continue enabling our robot, by making use of theLEGO Touch sensor and LEDs. Whenever the robot
is poweredon (that is when it is allowed to move) we are going to make the left LED blink to indicate that
the robot is up and running.

Create a new�zz �le called heartbeat.fizz . In it, we will de�ne the elemental responsible by turning the
left LED ON and OFF periodically:

1 ev3.bev.hbeat {
2
3 chatty = no,
4 replies.are.triggers = no,
5 power = 0,
6 toggle = 1

7

7
8 } {
9

10 () :- @ev3.tck.fast(_,_),
11 peek(power,1),
12 boo.not($ toggle,:toggle),
13 poke(toggle,:toggle),
14 #ev3.sys.led.0(poke,g(:toggle)),
15 hush;
16
17
18 () :- @ev3.bev.state(hint,power(off)), poke(power,0), # ev3.sys.led.0(poke,g(0));
19 () :- @ev3.bev.state(hint,power(on)), poke(power,1), #e v3.sys.led.0(poke,g(1));
20
21 }

The �le de�nes three trigger based prototypes. The �rst one (in line 10) will toggle the LED ON and
OFF by querying the elemental ev3.sys.led.0 with the requiered brightness value. The trigger predicate
(ev3.tck.fast) references anelemental that we will add shortly. On line 11, we look at the value of the
power property which will be a local cache of the power state of the robot. The prototypes on line 18
and 19 will change the value of the property on reaction to trigger statementscoming from the yet to be
de�ned elemental ev3.bev.state . This elemental will keep track of the power state of the robot. When
that is changed, for example when the user presses the Touch sensor, theelementalwill publish a statement
(either ev3.bev.state(hint,power(off)) or ev3.bev.state(hint,power(on))) which will then trigger
ev3.bev.hbeat . The property power will then get set and the LED will get turned either ON or OFF. L ine
12 and 13 shows the logic used to toggle the brightness value between 0 and 1 at each periodic trigger coming
from ev3.tck.fast .

Just in case you are wondering what is thathush primitive we called on line 15 (you will see it used later on
as well), know that it is only an optional performance improvement. The primitive will suppress the publi-
cation of a ev3.bev.hbeat statement on successful conclusion of the inference, saving a bit of the runtime
resources, which matters on a processing power limited board like the EV3.

Let's now de�ne ev3.tck.fast in a new �le called ticks.fizz :

1 ev3.tck.fast {
2 class = FZZCTicker,
3 tick = 0.5,
4 tick.on.attach = yes
5 } {}

It is de�ned as an elementalof classFZZCTicker, and will publish a statement (of arity two) at a given pace
which we will set to 0.5 (seconds). We also indicate (with thetick.on.attach property) that we want the
elemental to publish a statement when it is added to the substraterather than wait for the �rst time tick.

Next, let's de�ne the ev3.bev.state elemental in a separate �le called behaviors.fizz :

1 ev3.bev.state {
2
3 power = off
4
5 } {
6
7 (peek,power(:state))^ :- peek(power,:state);
8 (poke,power(:state))^ :- poke(power,:state), declare($ self,[hint,power(:state)]);
9

10 () :- @ev3.sen.touch(hint,pressed(1)), peek(power,on)^ , ~self(poke,power(off)), hush;
11 () :- @ev3.sen.touch(hint,pressed(1)), peek(power,off) , ~self(poke,power(on)), hush;
12
13 }

8

As we have seen earlier, the core purpose of thiselemental is to keep track of when the robot is allowed to
move. Changing this state can be done via a query to theelemental or by pressing the Touch sensor. On
line 7, we de�ne a prototype which when matched with a predicate will read the value of the power property.
On line 8, we de�ne the prototype for when the value of the property power is to be set. When thisprototype
gets executed, it will complete with the declare primitive which will publish a new statement constructed
from the terms passed to it. $ self is a constant which uni�es to the label of the elemental in which it is
used. This publishedstatement is the one we set up a triggerpredicate for in ev3.bev.hbeat . On line 10
and 11, we de�ne the two trigger basedprototypes which will react to a press event on the Touch sensor
(when the sensor is pressed down, thefunctor that is the secondterm of the published statement will unify
to pressed(1) . When depressed, it will bepressed(0)).

Once we add the three new �les to our solution, we'll be ready to test the transition of the power state for
the robot:

1 {
2 "solution" : {
3 "modules" : ["modEV3"],
4 "sources" : ["system.fizz","sensors.fizz","motors.fiz z","ticks.fizz","heartbeat.fizz","behaviors.fizz"],
5 "globals" : []
6 }
7 }

As we did before, we will use thespy command to observe the state transition as well as the Touch sensor
presses:

robot@ev3dev:~/fizz.0.6.0-X $./fizz.ev3 ./etc/ev3/robot.json
fizz 0.6.0-X (20190601.1943) [lnx.ev3|1]
Press the ESC key at anytime for input prompt

load : loading ./etc/ev3/robot.json ...
load : loaded ./mod/lnx/ev3/modEV3.so in 0.081s
load : loading ./etc/ev3/system.fizz ...
load : loaded ./etc/ev3/system.fizz in 0.188s
load : loading ./etc/ev3/sensors.fizz ...
ev3.sen.touch : sensor detected!
ev3.sen.color : sensor detected!
ev3.sen.sonic : sensor detected!
load : loaded ./etc/ev3/sensors.fizz in 0.564s
load : loading ./etc/ev3/motors.fizz ...
ev3.sen.gyros : sensor detected!
ev3.act.motor.l : motor detected!
ev3.act.motor.r : motor detected!
load : loaded ./etc/ev3/motors.fizz in 0.424s
ev3.act.motor.t : motor detected!
load : loading ./etc/ev3/ticks.fizz ...
load : loaded ./etc/ev3/ticks.fizz in 0.097s
load : loading ./etc/ev3/heartbeat.fizz ...
load : loaded ./etc/ev3/heartbeat.fizz in 0.387s
load : loading ./etc/ev3/behaviors.fizz ...
load : loaded ./etc/ev3/behaviors.fizz in 1.115s
load : loading completed in 3.233s
?- /spy(append,ev3.sen.touch)
spy : observing ev3.sen.touch
?- /spy(append,ev3.bev.state)
spy : observing ev3.bev.state
spy : S ev3.sen.touch(hint, pressed(1)) (15.000000)
spy : S ev3.bev.state() := 0.00 (14.980050)
spy : S ev3.bev.state(hint, power(on)) (15.000000)
spy : S ev3.sen.touch(hint, pressed(0)) (15.000000)
spy : S ev3.sen.touch(hint, pressed(1)) (15.000000)
spy : S ev3.bev.state(hint, power(off)) (15.000000)
spy : S ev3.sen.touch(hint, pressed(0)) (15.000000)

9

Setting-up a Cluster

The native way for multiple instances of �zz running on separate hosts to collaborate is to use theCLU
module. In this case, we want the robot and a main computer to be connected so that we can not only
expand the computing abilities of the robot by using external resources, but also to be able to observe the
execution of the solution on the robot.

Hooking this up in �zz is fairly simple (don't let the number of properties scare you). Create a new �le called
network.fizz . We will de�ne the CLUprovided elemental that creates the bridge between our two remote
instances of�zz :

1 ev3.sys.network {
2
3 class = FZZCCLUGateway,
4
5 filters = [
6 ev3.sys,
7 ev3.act.motor.t, ev3.act.motor.l, ev3.act.motor.r,
8 ev3.sen.color, ev3.sen.sonic, ev3.sen.gyros,
9 ev3.bev.state

10],
11
12 MCAddress = "233.252.1.32",
13 CLUDPPort = 49152,
14 TXUDPPort = 49153,
15
16 Bandwidth.value = 12500,
17 Bandwidth.peers = 2,
18 Bandwidth.limit = 95,
19
20 CLCadence = 350,
21 CLTimeout = 750,
22 XXTimeout = 25,
23 TXTimeout = 500,
24 SyCadence = 1000,
25 TXCadence = 3,
26 PkBLength = 1472,
27 PkRetries = 10,
28 PkWinSize = 10,
29 RXCadence = 3
30
31 }

The properties that will most matters to you are filters and Bandwidth.value . The rest are out of the
scope of this article. For more details, check out the�zz user manual. Because the amount of inferences
on a substrate can be large, thefilters property allows to specify which can send (and receive) to/from
the other �zz instances that are in the cluster (which, by the way, is identi�ed by the multicast address
provided with the property MCAddress). If the label of a predicate or statement isn't in this list, it will not
be transmitted or received. As for Bandwidth.value , it is the bandwidth available for the cluster (in bytes
per ms). Depending on your networking setup and quality (router, USB WiFi dongle ...) you may have to
adjust the value if you notice long delays when doing inferences that reach out onto the cluster.

Let's give this a try now. First, we need to modify our solution to load the CLUmodule and the new �le we
just created:

1 {
2 "solution" : {
3 "modules" : ["modEV3","modCLU"],
4 "sources" : ["system.fizz","sensors.fizz","motors.fiz z","ticks.fizz","heartbeat.fizz",
5 "behaviors.fizz","network.fizz"],
6 "globals" : []
7 }
8 }

10

We also need to create a new solution �le for the�zz instance we are going to run on a desktop (or laptop).
Let's call this �le host.json . All we need on the computer to do for now is to load the same module CLUas
well as network.fizz :

1 {
2 "solution" : {
3 "modules" : ["modCLU"],
4 "sources" : ["network.fizz"],
5 "globals" : []
6 }
7 }

Let's give this a try, �rst by running �zz on the EV3:

robot@ev3dev:~/fizz.0.6.0-X $./fizz.ev3 ./etc/ev3/robot.json
fizz 0.6.0-X (20190601.1943) [lnx.ev3|1]
Press the ESC key at anytime for input prompt

load : loading ./etc/ev3/robot.json ...
load : loaded ./mod/lnx/ev3/modEV3.so in 0.080s
load : loaded ./mod/lnx/ev3/modCLU.so in 0.031s
load : loading ./etc/ev3/system.fizz ...
load : loaded ./etc/ev3/system.fizz in 0.186s
load : loading ./etc/ev3/sensors.fizz ...
ev3.sen.touch : sensor detected!
ev3.sen.color : sensor detected!
ev3.sen.sonic : sensor detected!
load : loaded ./etc/ev3/sensors.fizz in 0.572s
load : loading ./etc/ev3/motors.fizz ...
ev3.sen.gyros : sensor detected!
ev3.act.motor.l : motor detected!
ev3.act.motor.r : motor detected!
load : loaded ./etc/ev3/motors.fizz in 0.453s
ev3.act.motor.t : motor detected!
load : loading ./etc/ev3/ticks.fizz ...
load : loaded ./etc/ev3/ticks.fizz in 0.090s
load : loading ./etc/ev3/heartbeat.fizz ...
load : loaded ./etc/ev3/heartbeat.fizz in 0.391s
load : loading ./etc/ev3/behaviors.fizz ...
load : loaded ./etc/ev3/behaviors.fizz in 1.130s
load : loading ./etc/ev3/network.fizz ...
load : loaded ./etc/ev3/network.fizz in 0.382s
load : loading completed in 3.839s

We will then launch the instance on the computer and query theUltrasonic sensor from it:

jlv@arrakis:~/Code/okb/apps/fizz $./fizz.x64 ./etc/ev3/host.json
fizz 0.6.0-X (20190601.2228) [lnx.x64|8|l]
Press the ESC key at anytime for input prompt

load : loading ./etc/ev3/host.json ...
load : loaded ./mod/lnx/x64/modCLU.so in 0.000s
load : loading ./etc/ev3/network.fizz ...
load : loaded ./etc/ev3/network.fizz in 0.003s
load : loading completed in 0.004s
?- #ev3.sen.sonic(peek,value(:v))
-> (2.550000) := 1.00 (0.182) 1

Drive behavior

Now that we have all the basic components in place, let's add amore advanced component to our robot;
one that combines sensors and motors to performtank steering type mobility. While this is something that
could be implemented directly in �zz , for performance reasons, theEV3module provides anelementalclass
(EV3CBEVDrive) for that single purpose. We are going to make use of it.

11

The elemental ties up two motors and a Gyroscope sensor to provide an easy way to ask the robot to turn
in any direction and drive or alter its course while driving. It also implements a very basic odometry system
which can be used to know the rough estimated position of the robot. This can be controlled at runtime via
a set of speci�c queries.

Re-open thebehaviors.fizz �le we created earlier, and copy into it the following de�nit ion:

1 ev3.bev.drive {
2
3 class = EV3CBEVDrive,
4
5 ticks = 150, // control loop frequency (in ms)
6 hints = 3, // how often to publish a hint when running a program (modulo)
7
8 gyros = ev3.sen.gyros, // label of the gyros sensor
9 motor.l = ev3.act.motor.l, // label of the left motor

10 motor.r = ev3.act.motor.r, // label of the right motor
11
12 odometry = { // odometry characteristics
13 wheel.c = 0.176, // circumference of the wheel (in m)
14 motor.d = 0.12 // measured distance in between the center of t he motors (in m)
15 },
16
17 move = { // 'move' program setup
18 speed = 270, // speed to be applied to the motors at full power l evel
19 pid.Kp = 3.5, // PID's proportional constant
20 pid.Kd = 0.5, // PID's derivative constant
21 pid.Ki = 0 // PID's integral constant
22 },
23
24 turn = {
25 speed = 235, // speed to be applied to the motors at full power l evel
26 pid.Kp = 3.5, // PID's proportional constant
27 pid.Kd = 0.5, // PID's derivative constant
28 pid.Ki = 0 // PID's integral constant
29 }
30
31 } {}

For more details on the working of this elementaland the meaning of some of its properties, check out the
�zz user manual. I did leave comments on each line for the curiousreaders. For now, though, we are only
going to focus on the properties that are more likely to be changed to adapt to the robot that you have
assembled; that is the value speci�ed in theframe assigned to theodometry property. Take out a ruler and
mesure the circumference of the wheel attached to the two motors as well as the distance in between the
center of the two motors. Convert both values in meters and update the value for wheel.c and motor.d .
Both values are crucial for the odometry estimation.

If you named the gyroscope sensor or the motorselementalsdi�erently, you will need to reect that change
to the properties gyros , motor.l and motor.r .

Here are examples of thepredicatesto which the elementalwill answer to that can be used to make the robot
move:

#ev3.bev.drive(poke,heading(30)) set target heading
#ev3.bev.drive(poke,pwlevel(0.5)) set power level
#ev3.bev.drive(peek,position(:l)) get the estimated position of the robot (using odometry)
#ev3.bev.drive(poke,position([0,0])) set the estimated position of the robot (using odometry)
#ev3.bev.drive(call,move) move towards the target heading
#ev3.bev.drive(call,turn.to(45)) stay put but rotate to face the target heading (45 degrees)
#ev3.bev.drive(call,turn.by(-25)) stay put but rotate to face an o�set from the current heading
#ev3.bev.drive(halt) stop, don't move nor rotate

When the elemental is executing one of the called functions (move, turn.to or turn.by), it will frequently
publish a statement to indicate the status of the function. Using it as a trigger predicate allows another

12

elementalto react to it, for instance, to execute an action after the robot has turned toward a given direction.

Since we have simply added theelemental to an existing �zz �le we do not have to modify our solution �le.
In the example that follows, we will get the robot moving forward, and then stop it:

robot@ev3dev:~/fizz.0.6.0-X $./fizz.ev3 ./etc/ev3/robot.json
fizz 0.6.0-X (20190601.1943) [lnx.ev3|1]
Press the ESC key at anytime for input prompt

load : loading ./etc/ev3/robot.json ...
load : loaded ./mod/lnx/ev3/modEV3.so in 0.147s
load : loaded ./mod/lnx/ev3/modCLU.so in 0.071s
load : loading ./etc/ev3/system.fizz ...
load : loaded ./etc/ev3/system.fizz in 0.314s
load : loading ./etc/ev3/sensors.fizz ...
ev3.sen.touch : sensor detected!
ev3.sen.color : sensor detected!
ev3.sen.sonic : sensor detected!
load : loaded ./etc/ev3/sensors.fizz in 0.935s
load : loading ./etc/ev3/motors.fizz ...
ev3.sen.gyros : sensor detected!
ev3.act.motor.l : motor detected!
ev3.act.motor.r : motor detected!
load : loaded ./etc/ev3/motors.fizz in 0.446s
ev3.act.motor.t : motor detected!
load : loading ./etc/ev3/ticks.fizz ...
load : loaded ./etc/ev3/ticks.fizz in 0.102s
load : loading ./etc/ev3/heartbeat.fizz ...
load : loaded ./etc/ev3/heartbeat.fizz in 0.406s
load : loading ./etc/ev3/behaviors.fizz ...
load : loaded ./etc/ev3/behaviors.fizz in 1.285s
load : loading ./etc/ev3/network.fizz ...
load : loaded ./etc/ev3/network.fizz in 0.750s
load : loading completed in 5.156s
?- /spy(append,ev3.bev.state)
spy : observing ev3.bev.state
?- /spy(append,ev3.bev.drive)
spy : observing ev3.bev.drive
?- #ev3.bev.drive(poke,pwlevel(0.5))
spy : Q #ev3.bev.drive(poke, pwlevel(0.500000)) (14.9942 95)
spy : R ev3.bev.drive(poke, pwlevel(0.500000)) (14.97575 6)
-> () := 1.00 (0.071) 1
?-
spy : S ev3.bev.state() := 0.00 (14.978130)
spy : S ev3.bev.state(hint, power(on)) (15.000000)
?- #ev3.bev.drive(call,move)
spy : Q #ev3.bev.drive(call, move) (14.992318)
spy : R ev3.bev.drive(call, move) (14.965857)
-> () := 1.00 (0.067) 1
spy : S ev3.bev.drive(hint, move(0, [0.016133, 0], 0)) (15. 000000)
spy : S ev3.bev.drive(hint, move(0, [0.045956, 0], 0)) (15. 000000)
spy : S ev3.bev.drive(hint, move(0, [0.075288, 0.000158], 0)) (15.000000)
spy : S ev3.bev.drive(hint, move(0, [0.104621, 0.000158], 0)) (15.000000)
spy : S ev3.bev.drive(hint, move(1, [0.134929, 0.000503], -1)) (15.000000)
spy : S ev3.bev.drive(hint, move(2, [0.164005, 0.001339], -2)) (15.000000)
spy : S ev3.bev.drive(hint, move(2, [0.193565, 0.002372], -2)) (15.000000)
spy : S ev3.bev.drive(hint, move(2, [0.223124, 0.003404], -2)) (15.000000)
spy : S ev3.bev.drive(hint, move(1, [0.252938, 0.004091], -1)) (15.000000)
spy : S ev3.bev.drive(hint, move(1, [0.281533, 0.004590], -1)) (15.000000)
spy : T ev3.bev.state
spy : S ev3.bev.drive(hint, move(2, [0.311838, 0.005187], -2)) (15.000000)
?- #ev3.bev.drive(halt,move)
spy : S ev3.bev.drive(hint, move(2, [0.340909, 0.006202], -2)) (15.000000)
spy : S ev3.bev.drive(hint, move(2, [0.370225, 0.007226], -2)) (15.000000)
spy : S ev3.bev.drive(hint, move(2, [0.400273, 0.008275], -2)) (15.000000)
spy : S ev3.bev.drive(hint, move(2, [0.428611, 0.009265], -2)) (15.000000)
spy : S ev3.bev.drive(hint, move(1, [0.458180, 0.009947], -1)) (15.000000)
spy : S ev3.bev.drive(hint, move(2, [0.487994, 0.010613], -2)) (15.000000)
spy : S ev3.bev.drive(hint, move(2, [0.517554, 0.011645], -2)) (15.000000)
spy : S ev3.bev.drive(hint, move(1, [0.547118, 0.012503], -1)) (15.000000)
spy : S ev3.bev.drive(hint, move(1, [0.575958, 0.013006], -1)) (15.000000)
spy : S ev3.bev.drive(hint, move(1, [0.605779, 0.013185], -1)) (15.000000)
spy : S ev3.bev.drive(hint, move(0, [0.634376, 0.013522], 0)) (15.000000)
spy : S ev3.bev.drive(hint, move(1, [0.665173, 0.013876], -1)) (15.000000)
spy : Q #ev3.bev.drive(halt, move) (14.983712)
spy : S ev3.bev.drive(hint, move(1, [0.695479, 0.014405], -1)) (15.000000)
spy : S ev3.bev.drive(hint, move(1, [0.695479, 0.014405])) (15.000000)
spy : R ev3.bev.drive(halt, move) (14.952221)

13

-> () := 1.00 (0.127) 1

Sonar behavior

The second more advanced component we are now going to add is asonar which, given an ultrasonic sensor
mounted on a motor, can be used to get a sense of what is around our robot. For performance reasons, the
CLUmodule provides anelementalclass (EV3CBEVSonar) that implements this.

Re-open once more thebehaviors.fizz �le and copy into it the de�nition that follow. Here again, re fer to
the �zz user manual for explanations on the properties beyond the comments left in the code:

1 ev3.bev.sonar {
2
3 class = EV3CBEVSonar,
4 chatty = yes,
5
6 gyros = ev3.sen.gyros, // label of the gyros sensor (optiona l)
7 sonic = ev3.sen.sonic, // label of the sonic sensor
8 motor = ev3.act.motor.t, // label of the motor
9 drive = ev3.bev.drive, // label of the drive behavior (optio nal)

10
11 scan.mtime = 250, // how often to check if the motor has reache d the target position (in ms)
12 scan.itime = 50, // how long after a step before reading the so nic sensor (in ms)
13 scan.speed = 270, // speed of the motor to be applied in scan mo de
14 skim.mtime = 250, // how often to read from the sensor while th e motor is turning in skim mode (in ms)
15 skim.speed = 80 // speed of the motor to be applied in skim mode
16
17 } {}

As you can see, theelemental ties up four of the elementalswe have de�ned so far. For the scope of this
article, we are not going to dive into each of the properties.Here again, if you have used di�erent names
for the elementalswe have created in this article, you will need to update the values of the gyros , sonic ,
motor and drive properties.

Just like the previous elementalwe have added, this one will answer topredicates. Here are some examples:

#ev3.bev.sonar(call,scan([-90,-45,0,45,90])) scan by moving the sensor sequentially to 5 di�erent
relative orientations.

#ev3.bev.sonar(call,scan.max([-90,-45,0,45,90])) scan by moving the sensor sequentially to 5 di�erent
relative orientations, and provides the direction
in which the distance is the largest

#ev3.bev.sonar(call,scan.min([-90,-45,0,45,90])) scan by moving the sensor sequentially to 5 di�erent
relative orientations, and provides the direction
in which the distance is the smallest

#ev3.bev.sonar(call,skim([-20,20])) scan by moving the sensor in one slow continuous
motion in between two relative orientations.

#ev3.bev.sonar(call,skim.max([-20,20])) scan by moving the sensor in one slow continuous
motion in between two relative orientations and
provides the direction in which the distance is
the largest.

#ev3.bev.sonar(call,skim.min([-20,20])) scan by moving the sensor in one slow continuous
motion in between two relative orientations and
provides the direction in which the distance is
the smallest.

#ev3.bev.sonar(halt) halt any scanning and returns to the relative
orientation of 0.

When the elemental has completed executing one of the called functions, it willpublish a statement that
will contain the result. Using it as a trigger predicate allows another elemental to react to it, for instance,

14

to turn the robot into the direction with the clearest path.

Since we have simply added theelemental to an existing �zz �le we can here again try without having to
modify our solution �le:

?- /spy(append,ev3.bev.sonar)
spy : observing ev3.bev.sonar
?- #ev3.bev.sonar(call,scan([-90,-45,0,45,90]))
spy : Q #ev3.bev.sonar(call, scan([-90, -45, 0, 45, 90])) (1 4.992524)
spy : R ev3.bev.sonar(call, scan([-90, -45, 0, 45, 90])) (14 .952157)
-> () := 1.00 (0.117) 1
spy : S ev3.bev.sonar(hint, scan(1560136694.709000, [[-8 8, 2.001000, [0.695479, 0.014405]], [-44, 2.550000, [0.69 5479,

0.014405]], [1, 2.335000, [0.695479, 0.014405]], [43, 0.8 64000, [0.695479, 0.014405]], [88, 0.786000, [0.695479,
0.014405]]])) (15.000000)

?- #ev3.bev.sonar(call,scan.max([-90,-45,0,45,90]))
spy : Q #ev3.bev.sonar(call, scan.max([-90, -45, 0, 45, 90])) (14.992260)
spy : R ev3.bev.sonar(call, scan.max([-90, -45, 0, 45, 90])) (14.974081)
-> () := 1.00 (0.071) 1
spy : S ev3.bev.sonar(hint, scan.max(1560136711.072965, [[-88, 1.989000, [0.695479, 0.014405]], [-44, 2.550000, [0.695479,

0.014405]], [-1, 2.550000, [0.695479, 0.014405]], [43, 0. 864000, [0.695479, 0.014405]], [88, 0.786000, [0.695479,
0.014405]]], [-44, 2.550000, [0.695479, 0.014405]])) (15 .000000)

Each hint statementthe elementalpublishes will contains thelist of readings. Each reading will itself be alist
containing the absolute orientation at which the reading was taken, and followed by the measured distance
(in meters). The third term will be the position of the robot at the time of the reading, as estimated by
the odometry. In the case of thescan.max function, the statement will contain a third term that will be a
copy of the reading with the largest distance. If the function was scan.min , it will be the reading with the
smallest distance.

Sensing behavior

The third and last advanced component we are now going to add is asensingone which will combine readings
from sensors and motors into a single time-stampedstatementthat will get published with a given frequency.
Here again, for performance reasons theCLUmodule provides that elementalas a class (EV3CBEVSense).

Re-open once more thebehaviors.fizz �le and copy into it the de�nition that follows:

1 ev3.bev.sense {
2
3 class = EV3CBEVSense,
4 ticks = 250,
5 terms = [
6 [ev3.sen.color,value],
7 [ev3.sen.sonic,value],
8 [ev3.act.motor.t,position],
9 [ev3.sen.gyros,value],

10 [ev3.bev.drive,position]
11],
12 mode = auto
13
14 } {}

The property terms is the list of all the sensors or motors that we wish to includein the statement. After
the label of the elemental to be queried, the name of the property to be fetched is expected. Each of the
elementalsis expected to answer topeek predicate such as#ev3.sen.gyros(peek,value(:v)) . The order
in which the elementalsare presented in thelist will de�ne the order in which their values will show-up
in the statements second term. The ticks property indicates how often (in ms) we want the referenced
elementalsto be queried in the automatic mode. Which is the mode in which we will be using theelemental
for this robot. Note, that a statement will only be published if at least one of the values coming from the
sensors or motors have changed.

15

Let's try this out:

robot@ev3dev:~/fizz.0.6.0-X $./fizz.ev3 ./etc/ev3/robot.json
fizz 0.6.0-X (20190601.1943) [lnx.ev3|1]
Press the ESC key at anytime for input prompt

load : loading ./etc/ev3/robot.json ...
load : loaded ./mod/lnx/ev3/modEV3.so in 0.082s
load : loaded ./mod/lnx/ev3/modCLU.so in 0.022s
load : loading ./etc/ev3/system.fizz ...
load : loaded ./etc/ev3/system.fizz in 0.183s
load : loading ./etc/ev3/sensors.fizz ...
ev3.sen.touch : sensor detected!
ev3.sen.color : sensor detected!
ev3.sen.sonic : sensor detected!
load : loaded ./etc/ev3/sensors.fizz in 0.524s
load : loading ./etc/ev3/motors.fizz ...
ev3.sen.gyros : sensor detected!
ev3.act.motor.l : motor detected!
ev3.act.motor.r : motor detected!
load : loaded ./etc/ev3/motors.fizz in 0.454s
ev3.act.motor.t : motor detected!
load : loading ./etc/ev3/ticks.fizz ...
load : loaded ./etc/ev3/ticks.fizz in 0.125s
load : loading ./etc/ev3/heartbeat.fizz ...
load : loaded ./etc/ev3/heartbeat.fizz in 0.451s
load : loading ./etc/ev3/behaviors.fizz ...
load : loaded ./etc/ev3/behaviors.fizz in 0.993s
load : loading ./etc/ev3/network.fizz ...
load : loaded ./etc/ev3/network.fizz in 0.420s
load : loading completed in 3.820s
?- /spy(append,ev3.bev.sense)
spy : observing ev3.bev.sense
spy : S ev3.bev.sense(hint, scan(1560138582.684444, [0, 1 .762000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138582.930861, [0, 1 .763000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138583.430375, [0, 1 .766000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138583.680716, [0, 1 .762000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138583.930339, [0, 1 .763000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138584.680668, [0, 1 .764000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138584.929949, [0, 1 .763000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138585.184008, [0, 1 .762000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138585.430722, [0, 1 .763000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138585.930447, [0, 1 .764000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138586.180119, [0, 1 .763000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138586.680684, [0, 1 .767000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138586.930651, [0, 1 .764000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138587.180854, [0, 1 .763000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138588.180581, [0, 1 .762000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138588.430206, [0, 1 .763000, 0, 0, [0, 0]])) (15.000000)
?- #ev3.bev.sonar(call,scan.max([-90,-45,0,45,90]))
spy : S ev3.bev.sense(hint, scan(1560138593.181025, [0, 1 .762000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138593.434390, [0, 1 .763000, 0, 0, [0, 0]])) (15.000000)
-> () := 1.00 (0.057) 1
spy : S ev3.bev.sense(hint, scan(1560138593.680864, [0, 1 .679000, -28, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138593.930725, [0, 0 .429000, -92, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138594.180544, [0, 0 .464000, -70, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138594.430978, [0, 1 .787000, -28, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138594.684519, [0, 1 .754000, 11, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138594.931040, [0, 0 .863000, 43, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138595.191754, [0, 0 .856000, 52, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138595.430757, [0, 0 .780000, 88, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138595.684543, [0, 0 .780000, 71, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138595.930399, [0, 2 .372000, 7, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138596.180940, [0, 1 .764000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138596.429753, [0, 1 .767000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138596.679725, [0, 1 .764000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138596.930038, [0, 1 .767000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138597.179934, [0, 1 .764000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138598.430492, [0, 1 .763000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138598.680638, [0, 1 .764000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138598.930253, [0, 1 .762000, 0, 0, [0, 0]])) (15.000000)
spy : S ev3.bev.sense(hint, scan(1560138599.180388, [0, 1 .767000, 0, 0, [0, 0]])) (15.000000)

Note, how how the second and thirdterms in the list change after a scan is requested from the sonar.

Before moving on to the last section of this article, we need to go back to the network.fizz �le and add
the last few elementalswe have created to thefilter list so that they can be accessible from a remote

16

computer:

1 filters = [
2 ev3.sys,
3 ev3.act.motor.t, ev3.act.motor.l, ev3.act.motor.r,
4 ev3.sen.color, ev3.sen.sonic, ev3.sen.gyros,
5 ev3.bev.state, ev3.bev.sense, ev3.bev.sonar, ev3.bev.d rive
6],

Autonomous exploring

Now that we have all the components in place, we are ready to combine them all to make our robot au-
tonomously wander around in a space. I have used the termbehavior earlier to categorize some of the
elementalswe are using. In the case of theelementalwe are building in this section, I will be using the term
instinct as it has a higher level of complexity and it is built on top of behaviors.

The simple procedure that the robot will be following is going to be the following:

1. Use thesonar to �nd a direction in which to head (the one where the reading is the largest distance)

2. Turn (in-place) to face the direction

3. Move (in that direction)

4. If an obstacle is detected with thesonar in about the direction the robot is heading, stop and go to 1

5. If an obstacle is detected with theColor sensor, stop and go to 1

The robot will also respect its power stateas we have setup earlier. When thestate is set to off , we will
have the robot stop as soon as possible if it is moving or turning.

To start, create a new �zz �le called instincts.fizz and copy into it the following de�nition for our new
elemental:

1 ev3.ins.xplorer {
2
3 chatty = no,
4 replies.are.triggers = no,
5
6 } {}

The chatty and replies.are.triggers properties we have set are only needed here due to the perfor-
mances constraints of theEV3. They basically ensure that the amount of unnecessary inferences will be
kept to the strict minimum.

Let's now modify our solution �le to include the new �zz �le:

1 {
2 "solution" : {
3 "modules" : ["modEV3","modCLU"],
4 "sources" : ["system.fizz","sensors.fizz","motors.fiz z","ticks.fizz","heartbeat.fizz",
5 "behaviors.fizz","network.fizz","instincts.fizz"],
6 "globals" : []
7 }
8 }

From the procedure we have written down earlier, we can see that there are four di�erent active states the
robot can be in: idle, moving, turning and picking where to head next. To keep track of what state we're

17

in, we are going to add a property to the elemental calling it state . The symbolswe will use to represent
each of the states we have listed above are:null , move, turn and pick .

We are also going to de�ne two properties (wide.scan and wide.scan2) to provide the list of relative angles
we wish the sonar to mesure when picking a new direction to head out to. The secondlist will be using when
its the Color sensorthat triggered a stop. When this occurs, we can't possibly continue moving forward and
thus we won't consider that direction when scanning.

When the robot is moving, we are going to use thesonar to scan ahead of the robot. But instead of a wide
scanning, we will perform a much more narrow scan. To tune this up, we are going to use the property
skim.scan to provide the list of relative angles to be scanned. We'll also repeat the scan while the robot
is moving with a set time interval between consecutive scans. The property skim.delay will provide that
value (in milliseconds).

Lastly, we'll use the properties turn.speed and move.speed to scale the speed value of the motors. We
will also de�ne the proximity property to provide the minimum distance (in meters) at which an obstacle
becomes an obstacle to be avoided.

We can now update the de�nition of our elementalas follow:

1 ev3.ins.xplorer {
2
3 chatty = no,
4 replies.are.triggers = no,
5
6 state = null,
7 wide.scan = [-135,-90,-45,0,45,90,135],
8 wide.scan2 = [-135,-90,-45,45,-90,135],
9 proximity = 0.5,

10 turn.speed = 0.8,
11 move.speed = 0.35,
12 skim.delay = 750,
13 skim.scan = [0,-5,5]
14
15 } {}

The main way to interface with the elemental is going to be via acall to a function we will call go. Here's
the de�nition of the two prototypes that will support calling and halting the function:

1 (call,go)^ :- peek(state,null),
2 #ev3.bev.state(peek,power(on)),
3 ~self(step,pick($ wide.scan));
4
5 (halt,go)^ :- peek(state,_?[neq(null)]),
6 ~self(step,null);

When a request to get the function started is made (the predicate uni�es with the prototype's entrypoint)
on line 1, we �rst verify that the current state is null (e.g. we are not already executing the function)
using the peek primitive . We then validate that the robot is currently powered ON by making a query to
ev3.bev.state (on line 2). If the Touch sensorwe are using as a power button hasn't been pressed, the
query will fail which mean the inference will fail and we won't get to line 3. If the robot is powered, we will
query the elemental itself to execute the �rst of the steps we described earlier (pick) using the wide.scan
property we set recently. The secondprototype (on line 5) handles the request to stop thego function. It
�rst ensures that the current state of the elemental is not null then queries itself to get the internal state
of the elemental to switch to null .

Before we move onto the actual implementation of each of the states, it is worth noting that �zz (at the time
of this writing) doesn't support preventing some prototype from being queried by anotherelemental. Thus,

18

it is possible to query directly the prototypes(which we will consider to beprivate) that we are about to add
without going thru the the one we have setup and consider to bepublic.

Now, the pick state's purpose, as we have seen earlier, is to use thesonar to �nd a direction to head towards
when the robot is stationary. We are going to implement this with the following prototype:

1 (step,pick(:s))^ :- console.puts(step.pick(:s)),
2 peek(state,_?[neq(pick)]),
3 poke(state,pick),
4 #ev3.bev.sonar(call,scan.max(:s));

Once the query gets matched with the entrypoint of theprototype and the variable s gets assigned with the
list of relative angles we want to scan for obstacles, we then use the primitive console.puts to print on the
console some tracing information. We then ensure that the current state of the elemental is not the one we
are trying to set. Once this is done, the inference will move to (line 3) setting the state of the elemental to
pick before calling thescan.max function of the sonar behavior with the requestedlist of angles (s).

As we discussed before, the query toev3.bev.sonar will be answered as soon as the requested function
starts. For the elemental to be made aware of the result of thesonar scan, we are going to use a trigger
basedprototype. In fact, we are going to have to add twoprototypesas there is two possible outcomes of the
scan: the furthest obstacle is further away than theproximity value we have setup in the properties or it
is closer.

Here is the de�nition of the prototype that will handle the �rst case:

1 () :- @ev3.bev.sonar(hint,scan.max(_,_,[:h,:d,_])),
2 peek(state,pick),
3 gt(:d, $ proximity)^,
4 ~self(step,turn.to(:h)),
5 hush;

On line 1, we will get the heading (which is the absolute heading, not the relative heading) (variable h)
and distance (variable d) by uni�cation of the statement published by ev3.bev.sonar with our predicate.
We then check that we are (still) in the pick state before (in line 3) using theprimitive gt to ensure that
the distance is greater than the value of theproximity property. Because we are going to have more than
a single prototype getting activated by the same statement, we post�x the primitive call by the cut sym-
bol. This will ensure that if the inference goes beyond that point, none of the other concurrent inferences
triggered by the samestatementwill continue (or execute at all). If the distance detected by the sonar satis-
�es the constraint, we query the elementalitself to execute the next step (turn.to) which we will de�ne later.

When the robot ends-up in a place where every possible direction is closer than what we feel comfortable
getting close too, we will get the robot to turn around and face a random direction:

1 () :- @ev3.bev.sonar(hint,scan.max(_,_,[:h,_,_])),
2 peek(state,pick),
3 rnd.sint(1,:v,-10,+10), add(180,:v,:a),
4 #add.angle(:h,:a,:nh),
5 ~self(step,turn.to(:nh)),
6 hush;

This is accomplished on line 3 by picking a random number between -10 and 10 (using the primitive
rnd.sint) and then adding it to 180 (primitive add) before using it as argument to thestep we wish the
elementalto execute now (line 5). As angles provided by thegyroscope sensorare expressed in degrees from
-180 to 180, we need to insure that the heading we want our robot to turn to is compatible, thus we query
the procedural knowledgeadd.angle de�ned below before passing the result to theturn.to step:

19

1 add.angle {
2
3 (:a,:b,:c) :- add(:a,:b,:ab), ~fix.angle(:ab,:c);
4 }
5
6 fix.angle {
7
8 (:a?[<0|180>],:a)^ :- true;
9 (:a?[<-180|0>],:a)^ :- true;

10 (:a?[lt(0)],:b)^ :- mod(:a,360,:a2), add(360,:a2,:b);
11 (:a?[gt(180)],:b)^ :- mod(:a,360,:a2), sub(:a2,360,:b) ;
12
13 }

The procedural knowledgewe de�ned here is pretty straightforward: add.angle �rst numerically add the two
angle values, then queryfix.angle to ensure that the sum of the angles stays between the expected bounds.
This is implemented by having the elemental fix.angle pick up the right prototype during the uni�cation
of the prototypes' entrypoint. Note the use of variable's constraints (e.g. :a?[<0|180>]) to minimize the
runtime cost of eachprototype by making any constraint part of the uni�cation.

Let's now look at how we would implement the prototype dealing with turning the robot towards a given
(absolute) heading:

1 (step,turn.to(:h))^ :- console.puts(step.turn.to(:h)) ,
2 peek(state,pick),
3 poke(state,turn.to),
4 ~self(exec,turn.to(:h));

Simarly to the previous related prototype, we start with a tracing the inference then check that the current
state of the elementalis indeedpick , before changing it to turn.to with the primitive poke. The prototype
concludes with a query that will execute the turn which we will de�ne as follows:

1 (exec,turn.to(:h))^ :- console.puts(exec(turn.to(:h))),
2 #ev3.bev.drive(poke,[pwlevel($ turn.speed)]),
3 #ev3.bev.drive(call,turn.to(:h));

Lines 2 and 3 query theelemental ev3.bev.drive to �rst set the power level to our turn.speed property
before calling the turn.to function. As for the sonar function call we made when scanning for a place
to head towards, the query will complete as soon as the robot starts to move. To know when the turn is
complete, so that we can start moving forward, we are going touse anothertrigger prototype:

1 () :- @ev3.bev.drive(hint,turn.to(:a)),
2 peek(state,turn.to),
3 mao.abs(:a,:a.abs?[lte(1)]),
4 ~self(step,move),
5 hush;

Unlike the sonar elemental, the drive elemental will publish ev3.bev.drive statements frequently while
executing the turn.to function. For each such statement, the term in the functor turn.to will be the
di�erence between the current heading and the target heading. We will use the primitive mao.abs on line 3
to ensure that the inference triggered by thestatementonly continues past that predicate when that value is
less or equal to1 degree. When the robot has turned towards the desired heading, the elementalwill query
itself to change its state to move. We will de�ne the prototype for that as follow:

1 (step,move)^ :- console.puts(step.move),
2 peek(state,_?[neq(move)]),
3 poke(state,move),

20

4 ~self(exec,move),
5 #ev3.bev.sonar(call,scan.min($ skim.scan, $ skim.delay));

Here again, theprototype outputs some trace to the console before changing thestate property to moveonly
if it isn't already the current state . The inference then continues by querying theelementalto get the robot
moving before queryingev3.bev.sonar to execute the scan.min function. Unlike the other times we have
called a function from the sonar, the predicate this time provides, as secondterm, a delay (in miliseconds)
we want the function to be repeated at. As long as the robot is moving, we want the sonar to continue
performing a narrow scanning of what is ahead of the robot. Providing that optional term to the function
will ensure that the elemental keeps executing the function every so often without having to explicitly call
the function over and over.

Let's now have a quick look at the de�nition of the moveprototype. No surprise here, lines 2 and 3 query the
elemental ev3.bev.drive to �rst set the power level to our move.speed property before calling the move
function:

1 (exec,move)^ :- console.puts(exec(move)),
2 #ev3.bev.drive(poke,pwlevel($ move.speed)),
3 #ev3.bev.drive(call,move);

While the robot is moving, we need to inspect the result of thescan.min function we have requested the
sonar to be executing. When the value is below theproximity property we have set, we will want the
robot to stop immediately and try to pick a new direction to head towards. If the distance is greater than
proximity , we will just output a trace on the console. The two following prototypes de�ne these:

1 () :- @ev3.bev.sonar(hint,scan.min(_,_,[:h,:d,_])),
2 peek(state,move),
3 lte(:d, $ proximity)^,
4 console.puts("proximity ",sonar(:d),"!"),
5 ~self(step,stop),
6 hush;
7
8 () :- @ev3.bev.sonar(hint,scan.min(_,_,[:h,:d,_])),
9 peek(state,move),

10 gt(:d, $ proximity)^,
11 console.puts("proximity ",sonar(:d)),
12 hush;

The prototype that will handle the query to change the state to stop is de�ned as follow:

1 (step,stop)^ :- console.puts(step.stop),
2 poke(state,null),
3 ~self(exec,stop),
4 ~self(step,pick($ wide.scan));

It sets the state to null on line 2, before executing the actual stop. Then, it queriesthe elemental itself to
get the robot to pick a new direction. The prototype executing the stop is also pretty straightforward. It
requests both thedrive amd sonar behaviors to stop the execution of the functions they are running. In the
case ofev3.bev.drive , this will cause the robot motion to stop:

1 (exec,stop)^ :- console.puts(exec(stop)),
2 #ev3.bev.drive(halt),
3 #ev3.bev.sonar(halt);

There are two moretrigger prototypes we need to add to have a completeautonomoussystem. The �rst one
will deal with the reading from the Color sensor. As you may recall, the value we read from the sensor is

21

provided as one of theterms in the scan functor of the statementsthat are published by the ev3.bev.sense .
Knowing that the value will jump from 0 to anything less than 1 when the sensor is a few centimeters aways
from a surface, we can write it as follow:

1 () :- @ev3.bev.sense(hint,scan(_,[:c?[gt(0)]|_])),
2 peek(state,move), console.puts("proximity alert! ",col or(:c)),
3 ~self(step,stop.c),
4 hush;

Here also, we use avariable constraint to express that the trigger predicate should only unify when the value
from the Color sensoris greater than 0. If this happens when the robot is moving (thestate of the elemental
will be move), we will output a trace message on the console then query theelemental itself. The prototype
for that will be setting the state property to null then executing a stop before moving back to thepick
step. Note that since this stop was originated by theColor sensor that is facing forward, we will look for a
new direction skipping the forward direction (by using the list in wide.scan2):

1 (step,stop.c)^ :- console.puts(step.stop.c),
2 poke(state,null),
3 ~self(exec,stop),
4 ~self(step,pick($ wide.scan2));

The second, and lasttrigger based prototypewe need to add is one handling the robot's power being changed
to OFF. Since, the elementalev3.bev.state will publish a hint statement when this occurs, we use it as a
trigger predicate to set the internal state of the elemental to null :

1 () :- @ev3.bev.state(hint,power(off)),
2 peek(state,_?[neq(null)]),
3 ~self(step,null),
4 hush;

The (step,null) self query reference the followingprototype, which by now should be straightforward to
follow:

1 (step,null)^ :- console.puts(step.null),
2 poke(state,null),
3 ~self(exec,stop);

Once you have added the lastprototype to the de�nition of ev3.ins.xplorer , we are ready to give this a try
by running it on a computer with the EV3 Intelligent brick will be running the rest. First, copy host.json
into a new �le called host+instincts.json and add the instincts.fizz to it:

1 {
2 "solution" : {
3 "modules" : ["modCLU"],
4 "sources" : ["network.fizz","instincts.fizz"],
5 "globals" : []
6 }
7 }

We can then start �zz on the EV3 like we did earlier:

robot@ev3dev:~/fizz.0.6.0-X $./fizz.ev3 ./etc/ev3/robot.json
fizz 0.6.0-X (20190601.1943) [lnx.ev3|1]
Press the ESC key at anytime for input prompt

22

load : loading ./etc/ev3/robot.json ...
load : loaded ./mod/lnx/ev3/modEV3.so in 0.082s
load : loaded ./mod/lnx/ev3/modCLU.so in 0.022s
load : loading ./etc/ev3/system.fizz ...
load : loaded ./etc/ev3/system.fizz in 0.183s
load : loading ./etc/ev3/sensors.fizz ...
ev3.sen.touch : sensor detected!
ev3.sen.color : sensor detected!
ev3.sen.sonic : sensor detected!
load : loaded ./etc/ev3/sensors.fizz in 0.524s
load : loading ./etc/ev3/motors.fizz ...
ev3.sen.gyros : sensor detected!
ev3.act.motor.l : motor detected!
ev3.act.motor.r : motor detected!
load : loaded ./etc/ev3/motors.fizz in 0.454s
ev3.act.motor.t : motor detected!
load : loading ./etc/ev3/ticks.fizz ...
load : loaded ./etc/ev3/ticks.fizz in 0.125s
load : loading ./etc/ev3/heartbeat.fizz ...
load : loaded ./etc/ev3/heartbeat.fizz in 0.451s
load : loading ./etc/ev3/behaviors.fizz ...
load : loaded ./etc/ev3/behaviors.fizz in 0.993s
load : loading ./etc/ev3/network.fizz ...
load : loaded ./etc/ev3/network.fizz in 0.420s
load : loading completed in 3.820s

and then run an instance on a PC on the same network. Once the robot's is powered by the pressing the
Touch sensor, we can queryev3.ins.ezplorer and get the robot moving around:

jlv@akkala:~/Code/okb/apps/fizz $./fizz.x64 ./etc/experiments/ev3/article/host+instin cts.json
fizz 0.6.0-X (20190601.2228) [lnx.x64|8|l]
Press the ESC key at anytime for input prompt

load : loading ./etc/experiments/ev3/article/host+inst incts.json ...
load : loaded ./mod/lnx/x64/modCLU.so in 0.000s
load : loading ./etc/experiments/ev3/article/network.f izz ...
load : loading ./etc/experiments/ev3/article/instincts .fizz ...
load : loaded ./etc/experiments/ev3/article/network.fi zz in 0.002s
load : loaded ./etc/experiments/ev3/article/instincts. fizz in 0.018s
load : loading completed in 0.019s
?- #ev3.ins.xplorer(call,go)
step.pick([-135, -90, -45, 0, 45, 90, 135])
-> () := 1.00 (0.331) 1
step.turn.to(-45)
exec(turn.to(-45))
step.move
exec(move)
proximity sonar(2.550000)
proximity sonar(2.550000)
proximity sonar(2.314000)
proximity sonar(2.261000)
proximity sonar(2.155000)
proximity sonar(2.116000)
proximity sonar(2.072000)
proximity sonar(1.969000)
proximity sonar(1.511000)
proximity sonar(0.864000)
proximity sonar(0.887000)
proximity sonar(0.962000)
proximity sonar(0.879000)
proximity sonar(0.580000)
proximity sonar(1.404000)
proximity sonar(0.380000)!
step.stop
exec(stop)
step.pick([-135, -90, -45, 0, 45, 90, 135])
step.turn.to(-2)
exec(turn.to(-2))

If we wanted to run the whole thing on the EV3, we'll just have to copy the robot.json �le into robot+instincts.json
and add instincts.fizz to the list of knowledgeto be loaded. Then queryev3.ins.ezplorer on the EV3
instance of �zz :

robot@ev3dev:~/fizz.0.6.0-X $./fizz.ev3 ./etc/ev3/robot+instincts.json

23

fizz 0.6.0-X (20190601.1943) [lnx.ev3|1]
Press the ESC key at anytime for input prompt

load : loading ./etc/ev3/robot+instincts.json ...
load : loaded ./mod/lnx/ev3/modEV3.so in 0.082s
load : loaded ./mod/lnx/ev3/modCLU.so in 0.022s
load : loading ./etc/ev3/system.fizz ...
load : loaded ./etc/ev3/system.fizz in 0.185s
load : loading ./etc/ev3/sensors.fizz ...
ev3.sen.touch : sensor detected!
ev3.sen.color : sensor detected!
ev3.sen.sonic : sensor detected!
load : loaded ./etc/ev3/sensors.fizz in 0.578s
load : loading ./etc/ev3/motors.fizz ...
ev3.sen.gyros : sensor detected!
ev3.act.motor.l : motor detected!
ev3.act.motor.r : motor detected!
load : loaded ./etc/ev3/motors.fizz in 0.448s
ev3.act.motor.t : motor detected!
load : loading ./etc/ev3/ticks.fizz ...
load : loaded ./etc/ev3/ticks.fizz in 0.098s
load : loading ./etc/ev3/heartbeat.fizz ...
load : loaded ./etc/ev3/heartbeat.fizz in 0.391s
load : loading ./etc/ev3/behaviors.fizz ...
load : loaded ./etc/ev3/behaviors.fizz in 1.002s
load : loading ./etc/ev3/network.fizz ...
load : loaded ./etc/ev3/network.fizz in 0.387s
load : loading ./etc/ev3/instincts.fizz ...
load : loaded ./etc/ev3/instincts.fizz in 3.261s
load : loading completed in 7.174s
?- #ev3.ins.xplorer(call,go)
step.pick([-135, -90, -45, 0, 45, 90, 135])
-> () := 1.00 (0.202) 1
step.turn.to(-89)
exec(turn.to(-89))
step.move
exec(move)
proximity sonar(2.123000)
proximity sonar(0.370000)!
step.stop
exec(stop)
step.pick([-135, -90, -45, 0, 45, 90, 135])
step.turn.to(-133)
exec(turn.to(-133))
step.move
exec(move)
proximity sonar(1.227000)
proximity sonar(1.160000)
proximity alert! color(0.010000)
step.stop.c
exec(stop)
step.pick([-135, -90, -45, 45, -90, 135])
step.turn.to(2)
exec(turn.to(2))
step.move
exec(move)

Going further

The example discussed in this document, can serve as the starting point for further exciting experimentations
which are outside of the scope of this article. For instance,using odometry and the outputs from the sonar
it would be possible to create asymbolic mapof the space in which the robot is roaming. With that map
and some path�nding procedural knowledge, the robot could be made to head towards particular places on
the map.

Another exciting experiment is to turn the robot into a Conscious Turing Machine 6 (running the CTM on
a PC and not on the EV3 due to processing constraints) and observe if adaptabilityarises from it.

6http://f1zz.org/downloads/ctm.pdf

24

